a2 United States Patent

Amit et al.

US009262080B2

US 9,262,080 B2
*Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) REDUCING READ LATENCY USING A POOL
OF PROCESSING CORES

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(72) Inventors: Jonathan Amit, Omer (IL); Amir
Lidor, Binyamina (IL); Sergey
Marenkov, Yehud (IL); Rostislav
Raikhman, Rishon-leZion (IL)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/590,724

(22) Filed: Jan. 6,2015
(65) Prior Publication Data
US 2015/0121017 Al Apr. 30, 2015

Related U.S. Application Data

(63) Continuation of application No. 13/523,605, filed on
Jun. 14, 2012, now Pat. No. 8,930,633.

(51) Int.CL
GOGF 12/00 (2006.01)
GOGF 13/00 (2006.01)
GOGF 13/28 (2006.01)
GOGF 3/06 (2006.01)
GOGF 9/50 (2006.01)
GOGF 11/34 (2006.01)

(52) US.CL
CPC GO6F 3/0611 (2013.01); GOG6F 3/0631
(2013.01); GOGF 3/0683 (2013.01); GOGF
9/5061 (2013.01); GOGF 9/5083 (2013.01);
GO6F 11/3409 (2013.01); GOG6F 3/061
(2013.01); GO6F 3/0653 (2013.01); GO6F
11/3485 (2013.01); GO6F 2209/504 (2013.01);
GOGF 2209/5011 (2013.01); YO2B 60/142
(2013.01)
(58) Field of Classification Search
CPC . GO6F 11/3409; GOGF 11/3485; GOG6F 3/061;
GOG6F 3/0653
USPC oo 711/140, 150, 154, 167
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

12/2009 Bose et al.
4/2010 Sihn et al.
6/2011 Khemani et al.

12/2011 Yan et al.
8/2013 Nakamura et al.

2009/0328055 Al
2010/0083273 Al
2011/0153953 Al
2011/0314233 Al
2013/0219136 Al

Primary Examiner — Ryan Bertram
(74) Attorney, Agent, or Firm — Griffiths & Seaton PLLC

(57) ABSTRACT

In a read processing storage system, using a pool of CPU
cores, the CPU cores are assigned to process either write
operations, read operations, and read and write operations,
that are scheduled for processing. A minimal number of the
CPU cores are allocated for processing the write operations,
thereby increasing write latency. Upon reaching a throughput
limit for the write operations that causes the minimal number
of the plurality of CPU cores to reach a busy status, the
minimal number of the plurality of CPU cores for processing
the write operations is increased.

39 Claims, 7 Drawing Sheets

CPU4 Only is Busy

504

Nl

US 9,262,080 B2

Sheet 1 of 7

Feb. 16, 2016

U.S. Patent

i i
§ |

¥l e M 97 7T !
i

. \\ ” N . !

i

- i IHAIG |

NILSAS W3L5AS “ AHOWIN FOVHOLS “
HAlNdiNGD d31lNdNGCD I !

i SSVIA]

i {

i !

] |

b i

AHOMLIN ” 1H0d LINO DNISSFI04d “
MOLIYIINNININGD i NOLEYOINNTININDGD TYHINGD |

|

i

” 7
mm\\ m m _

a1

U.S. Patent

/ 210

HOST

Feb. 16, 2016

Sheet 2 of 7

US 9,262,080 B2

HOST

HOST

NETWORK \>/

e

&0

e]

VOLUME 2323
VOLUME 234
VOLUME 236

N

\\-n_w"//

| VOLUME 2320 §

| VOLUME 240 |

S

FIG. 2

[CONTROL SWITCH 1 .
aw\v,,,“ i MICRC »| MEMORY |
u 242"] PROCESSOR
4 BUFFERS [@*———
244
/0 REQUEST
; CACHE E/MS A GAssIFER | e
255 MODULE :
/{cpu core
250 [scHepuLer | 2977 | MODULE
OPERATION L. A T ebuLs
SOFTWARE 258
STORAGE CONTROLLER 240
\ /’WW /’f

\\‘.-h-

| VOLUME 238 |

N

U.S. Patent Feb. 16, 2016 Sheet 3 of 7 US 9,262,080 B2

300

302
\\& BEGIN

TEST EACH CPU CORE TO DETERMINE IF EACH CPU CORE WAS 308
IN AN IDLE STATE OR A BUSY STATE DURING THE LAST -
TIME-QUT PERIOD

v

ASSIGN TO EACH CPU CORE ONLY WRITE OPERATIONS, - ~304
READ OPERATIONS, OR READ AND WRITE OPERATIONS

¥

SET A MAXIMUM NUMBER OF THE CPU CORES FOR PROCESSING 306
ONLY THE READ OPERATIONS THEREBY LOWERING T
THE READ LATENCY

v

ALLGCATE A MINIMAL NUMBER OF THE CPU CORES FOR ‘/‘-—308
PROCESSING ONLY THE WRITE OPERATIONS

" DETERMINE <
N__"TF THE MINIMAL NUMBER OF ™
o CPLI CORES HAVE REACHED e

. A BUSY STATE "

310

ALLCGCATE AN ADDITIONAL CPU CORE TO THE MINIMAL NUMBER f312
OF CPU CORES FOR PROCESSING THE WRITE OPERATIONS

I
B

¥
CONTINUE TO PROCESS THE READ OPERATIONS AND WRITE
OPERATIONS ACCORDING TO THE MAXIMUM NUMBER OF CRU
CORES FOR PROCESSING ONLY THE READ OPERATIONS AND THE _,/’“314
MINIMAL NUMBER OF CPU CORES FOR PROCESSING ONLY
THE WRITE OPERATIONS

)\ 316
" 7 oeTERMINE
{F ALL OF THE CPU CORES ARE
™ IN A BUSY STATE

PERMIT THE ENTIRE POCL OF CPU CORES TO PRDCESS BOTH | ~318
READ OPERATIONS AND WRITES OPERATIONS

320
END

FIG. 3

US 9,262,080 B2

Sheet 4 of 7

Feb. 16, 2016

U.S. Patent

¥ "Bid
4
F10 Enle]
- END Zndd
N
v Y

12|npayas

91e1s 701 Ul 8ie 53100 Nid) ||V

ENeY

1Ndd

00y

US 9,262,080 B2

Sheet S of 7

Feb. 16, 2016

U.S. Patent

ASAid

¥Ndo

-

§§§§

O IE
10 ERLe]
£Ndd NdD
M H

SETETTRIN

205

Asng st Ajup vndd

005

US 9,262,080 B2

Sheet 6 of 7

Feb. 16, 2016

U.S. Patent

9Dl
N
AS1g m ASTE Fidi 4148
¥NdD ENdD ZNdd INdD
\
M| | M = W M M Y
ML MM M Y
?I_ A M M M| 1M
| Ml Tl ,
mM

1oINPayas

509 o v/

0G5

Asng awio2ag ¢ pue £ $a10) NdD

US 9,262,080 B2

Sheet 7 of 7

Feb. 16, 2016

U.S. Patent

ASG

Pd3

J

AShd

1Nda

£°9i4
4
ASNG ASNg
£Ndo [4R1<0;
\.
MM d M
—ﬁf Y d |M
| [M
i d H H
H Y -
M

Ja|npayos

Wi2sAs papeot Ajjnd

US 9,262,080 B2

1
REDUCING READ LATENCY USING A POOL
OF PROCESSING CORES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This Application is a Continuation of U.S. patent applica-
tion Ser. No. 13/523,605, filed Jun. 14, 2012, the entirety of
which is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates in general to computers, and
more particularly to reducing (I/O) latency in a storage sys-
tem.

2. Description of the Related Art

In today’s society, computer systems are commonplace.
Computer systems may be found in the workplace, at home,
or at school. Computer systems may include data storage
systems, or disk storage systems, to process and store data.
Data storage systems, or disk storage systems, are utilized to
process and store data. A storage system may include one or
more disk drives. These data processing systems typically
require a large amount of data storage. Customer data, or data
generated by users within the data processing system, occu-
pies a great portion of this data storage. Many of these com-
puter systems include virtual storage components. However,
due to the various processing components and applications,
the computer systems experience input/output (I/O) laten-
cies.

SUMMARY OF THE DESCRIBED
EMBODIMENTS

With increasing demand for faster, more powerful and
more efficient ways to store information, optimization of
storage technologies is becoming a key challenge. In any
storage system, the input/output (I/O) latency is critical for
application performance. For example, storage systems intro-
duce processing on a write and read path, which processing
overhead causes latency. To minimize the write latency, stor-
age arrays use a write cache that absorbs the read latency for
all cases. To minimize read latency, storage arrays use a read
cache, which can absorb the read latency on some cases.
However, this is effective only in limited situations, such as on
predicted read operations. Yet, in other operations involving
the read cache, applications still suffer read latency. Cur-
rently, there are no techniques available to avoid the read
latency on unpredicted random read operations. As a result,
efficiency and productivity may be reduced. Thus, a solution
is required for reducing the read latency in a processing
storage system is required.

Accordingly, and in view of the foregoing, various exem-
plary method, system, and computer program product
embodiments for reducing read latency in a read processing
storage system using a pool of a plurality of central process-
ing unit (CPU) cores are provided. In one embodiment, by
way of example only, the CPU cores are assigned to process
either write operations, read operations, and read and write
operations, which are scheduled for processing. A minimal
number of the CPU cores are allocated for processing the
write operations, thereby increasing write latency. Upon
reaching a throughput limit for the write operations that
causes the minimal number of the plurality of CPU cores to
reach a busy status, the minimal number of the plurality of
CPU cores for processing the write operations is increased.

10

35

40

45

55

2

In addition to the foregoing exemplary method embodi-
ment, other exemplary system and computer product embodi-
ments are provided and supply related advantages. The fore-
going summary has been provided to introduce a selection of
concepts in a simplified form that are further described below
in the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
jectmatter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter. The claimed
subject matter is not limited to implementations that solve any
or all disadvantages noted in the background.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of the invention will be readily
understood, a more particular description of the invention
briefly described above will be rendered by reference to spe-
cific embodiments that are illustrated in the appended draw-
ings. Understanding that these drawings depict embodiments
of the invention and are not therefore to be considered to be
limiting of its scope, the invention will be described and
explained with additional specificity and detail through the
use of the accompanying drawings, in which:

FIG. 1 is a block diagram illustrating a computing system
environment having an example storage device in which
aspects of the present invention may be realized;

FIG. 2 is a block diagram illustrating a hardware structure
of'an exemplary data storage system in a computer system in
which aspects of the present invention may be realized;

FIG. 3 is a flowchart illustrating an exemplary method for
reducing input/output (I/0) latency in a storage system using
a pool of processors;

FIG. 4 is ablock diagram illustrating exemplary operations
for reducing read latency where all CPU cores are in an idle
state;

FIG. 5 is ablock diagram illustrating exemplary operations
for reducing read latency where all CPU cores are in an idle
state except for a rightmost CPU core;

FIG. 6 is ablock diagram illustrating exemplary operations
for reducing read latency where all CPU cores are in an idle
state except for the 2 rightmost CPU cores; and

FIG. 7 is ablock diagram illustrating exemplary operations
for reducing read latency where all CPU cores are in the busy
state.

DETAILED DESCRIPTION OF THE DRAWINGS

As previously mentioned, with increasing demand for
faster, more powerful and more efficient ways to store infor-
mation, optimization of storage technologies is becoming a
key challenge. Thus, dramatically lower the read latency
(e.g., read operations) on unpredicted, random read opera-
tions, the present invention seeks to provide a new scheduling
operation for read and write operations. In one embodiment,
the same pool of central processing unit (CPU) cores is used
for both a write operation and a read operation in the storage
system. A scheduler is queuing requests (e.g., requests for a
read and/or a write operation) as they arrive for processing in
the pool of CPU cores. If the request is a write operation, the
scheduler queues a write request. If the request is a read
operation, the scheduler queues a read request. However,
rather than scheduling the requests in a traditional way, such
as using a round robin technique or by scheduling based on
priority, the scheduling of the /O request applies a different
technique for automatically minimizing the latency for read
operations (which latency is visible to a user), while increas-
ing the write latency, since the write cache (which hides the

US 9,262,080 B2

3

latency from the user) is able to absorb the increased latency
without a user detecting the increased write latency.

It should be noted that the reduction in read latency isn’t
reducing the read latency of a single read request, but reduc-
ing the overall read latency of the entire read requests within
the queue. For example, ifthere are 10 requests in a queue and
each single request has either a 1 millisecond latency queue or
a 2 millisecond latency delay (depending on the type of
request), the total, combined latency of all of the requests
within the queue is either 10 milliseconds, at a minimum, or
20 milliseconds at a maximum. Also, the last request is
receiving all of the previous requests latency due to the delay
in the queue. For requests that are unpredicted and random,
there is currently no method for controlling and reducing the
total, combined latency of all of the requests within the queue
to the smallest possible value.

Because the write latency is greater than the read latency,
the illustrated embodiments described herein, provide for the
reduction in the read latency on all unpredicted, random read
requests, by assigning the CPU cores to either process write
operations, read operations, and/or read and write operations.
A maximum number of the CPU cores are set for processing
only the read operations, thereby lowering a read latency. A
minimal number of the CPU cores are allocated for process-
ing the write operations, thereby increasing write latency.
Upon reaching a throughput limit for the write operations,
which causes the minimal number of the plurality of CPU
cores to reach a busy status, the minimal number of the
plurality of CPU cores for processing the write operations is
increased.

Since the write cache is effective in hiding the latency from
the user, while the read cache is inefficient for hiding the
latency, scheduling for the read operations and the write
operations is performed so as to lower the read latency that is
visible to the user, while increasing the write latency which is
hidden. In other words, by scheduling the write operations
and read operations, the read latency, which is visible to the
user, is significantly reduced while increasing the write
latency, which is hidden. Thus, the scheduling is specifically
performed for processing the read requests in a storage sys-
tem on a maximum number of CPU cores and processing the
write requests in a storage system on a minimal number of
CPU cores. In other words, the read and write requests are not
mixed in a queue for a specific CPU core, but are assigned to
a specific processing core. Only when all of the CPU cores
reach a busy state will the read requests and the write requests
be permitted to be processed on each one of the CPU cores.

The new scheduling operation, schedules 1/O requests by
allocating to each CPU processing core, in a pool of CPU
processing cores, either, a write only request, and/or a read
and a write request. A maximum number of cores are set and
defaulted for processing only the read requests. A minimal
amount of cores are allocated for processing only the write
requests. The write operation bandwidth is sustained by mea-
suring core idle times and thresholds enforcement. The
threshold may be a some predetermined set of criteria to
determine if a CPU core is idle or busy. For example, on set of
criteria could be the throughput limit available on the CPU
core for processing the write operations before the write
cache can no longer sustain without detection, the increased,
but hidden, write latency. The criteria may also be the declar-
ing a CPU core busy when 100% ofthe processing power has
been consumed, thus anything less than 100% processing
power consumption would be in an idle state. The threshold is
used to change the CPU cores from one state to another state
(e.g., from an idle state to a busy state). Moreover, a CPU core
may be considered to be in the idle state when the CPU core

20

30

40

45

55

4

has not processed read/write request (e.g., atask for CPU core
or write) during specified threshold time period. A CPU core
may also be considered to be in the busy state when the CPU
core has processed at least one read/write during a specified
threshold time period. Each of these factors may be used
independent of each other or may be combined to establish
the threshold for determining either a busy state or an idles
state of the CPU cores. On fully loaded systems, where all
CPU cores have reached a busy status, all processing cores are
assigned to perform both the read and write processing tasks.
Moreover, when scheduling I/O requests between CPU cores
that have different processing power, a threaded weight value
is assigned to each one of a plurality of CPU cores. In this
way, the CPU cores are able to not only receive permission to
process only a specific type of operation (e.g., receive per-
mission to only process read requests), but also, the TWV
allows each CPU core to proportionally process the requests
according to processing power of the CPU core.

To illustrate the scheduling, consider the following sce-
nario with a pool of four (4) CPU cores being used for both a
write operation (e.g., read operation) and a read operation.
First, rather than assigning each one of the CPU cores both
read and write operations, the scheduler assigns read only
requests to the first three CPU cores for processing, and
assigns write only requests to a single CPU core (in this case
the right most CPU core). Inherently, the write operations
(e.g., the read operations) consume a significantly greater
amount of processing time as compared to read operations,
which consume a lesser amount of processing time. Thus, by
restricting all of the write operations to only one specific CPU
core (e.g., the rightmost CPU core) and allowing all other
CPU cores to process only the read operations, the latency of
the write operations is increased because there is a larger
queue of write operations, while reducing the latency on the
read operations in the other CPU cores. In other words,
because there is no mix of read operations and write opera-
tions to the CPU cores, the scheduling queue for the read
operations is decreased thereby lowering the read latency, but
the scheduling queue for the write operations is increased
thereby increasing the write latency. However, the since the
write operations utilize a write cache, the increase latency is
absorbed in the write cache and remains hidden from the user
until the write cache can no longer sustain without detection
the increased, but hidden, write latency. The write operation
bandwidth is sustained by measuring core idle times and the
threshold enforcement, available on the CPU core for pro-
cessing the write operations.

In the event that the throughput of the write operations has
increased to such a degree that the singular CPU core (e.g., the
rightmost CPU core) goes to one hundred percent utilization
(e.g., reached a busy state), and is no longer capable of han-
dling the throughput of all of the write operations, an addi-
tional CPU core may be allocated to handle the write only
tasks. Thus, by now having two CPU cores process the write
only operations, the throughput of the write operations is
maintained. Again, because the write cache hides the latency
of the write operations, the only concern relating to the write
operations is maintaining the throughput of the write opera-
tions. If the throughout becomes significantly large, the write
cache may reach a point where the latency is no longer
absorbed by the write cache. By maintaining the throughput,
despite the increased latency of the write operations, the write
cache continually absorbs all of the write latency of the write
operations, thereby allowing the latency of the write opera-
tions to remain irrelevant and hidden to the user. The write
cache may be compared to springs on a vehicle and the
throughput compared to the height of a bump in the road. If

US 9,262,080 B2

5

the height of the bump (throughput) in the road is low the
springs (write cache) will absorb all, if not most, of distur-
bance (write latency). If the height of the bump (throughput)
in the road is high the springs (write cache) may not absorb
the entire disturbance (write latency) created by a bump and a
person will feel the disturbance (write latency).

The remaining two CPU cores continue to process the read
only operations. The other two CPU cores only process the
write only operations. Again, by restricting all write opera-
tions to two specific CPU cores (e.g., the two rightmost CPU
cores) and allocating the other two CPU cores to process only
the read operations, the latency of the write operations is still
increased because there remains a larger queue of write
operations. However, the read latency on the read operations
in the two other CPU cores is still reduced. The restriction of
not mixing the read and write operations to any of the CPU
cores is maintained.

The process of adding an additional CPU core for process-
ing the write only tasks may continue for an nth number of
times, depending on how many CPU cores are in the pool of
CPU core resources, if the throughput of the write operations
has increased to such a degree that both of the two CPU cores
(e.g., the rightmost CPU core) go to one hundred percent
utilization and are both no longer capable of handling the
throughput of all of the write operations. If the situations
arises where all CPU cores are fully loaded and at one hun-
dred percent utilization (e.g., in the busy state), the scheduler
may now mix the read and write operations and assign both
read and write operations to all of the CPU cores.

It should noted the illustrated embodiments described
herein, may be applied and used in any technology that is
performing any manipulation to data that is being written to a
disk or any manipulation to data that is being read from a disk,
and this manipulation is requiring processing power. For
example, encryption and decompression of data two
examples of technologies that are manipulating data that is
being read from and/or written to a disk. Moreover, illustrated
embodiments described herein, may be applied to future tech-
nology or in any technology involving bidirectional process-
ing operations (e.g., reading and writing of the data and/or
signing and verifying of data).

Turning now to FIG. 1, exemplary architecture 10 of data
storage systems (e.g., virtual tape systems) in a computing
environment is depicted. The computer system 10 includes
central processing unit (CPU) 12, which is connected to mass
storage device(s) 14 and memory device 16. Mass storage
devices can include hard disk drive (HDD) devices, solid-
state devices (SSD) etc, which can be configured in a redun-
dant array of independent disks (RAID). The backup opera-
tions further described can be executed on device(s) 14,
located in system 10 or elsewhere. Memory device 16 can
include such memory as electrically erasable programmable
read only memory (EEPROM) or a host of related devices.
Memory device 16 and mass storage device 14 are connected
to CPU 12 via a signal-bearing medium. In addition, CPU 12
is connected through communication port 18 to a communi-
cation network 20, having an attached plurality of additional
computer systems 22 and 24.

FIG. 2 is an exemplary block diagram 200 showing a
hardware structure of a data storage system in a computer
system according to the present invention. Referring to FIG.
2, there are shown host computers 210, 220, 225, each acting
as a central processing unit for performing data processing a
part of a data storage system 200. The hosts (physical or
virtual devices), 210, 220, and 225 may be one or more new
physical devices or logical devices to accomplish the pur-
poses of the present invention in the data storage system 200.

10

20

25

30

35

40

45

50

55

60

65

6

In one embodiment, by way of example only, a data storage
system 200 may be implemented as IBM® System Storage™
DS8000™. A Network connection 260 may be a fibre channel
fabric, a fibre channel point to point link, a fibre channel over
ethernet fabric or point to point link, a FICON or ESCON 1/O
interface, any other I/O interface type, a wireless network, a
wired network, a LAN, a WAN, heterogeneous, homoge-
neous, public (i.e. the Internet), private, or any combination
thereof. The hosts, 210, 220, and 225 may be local or distrib-
uted among one or more locations and may be equipped with
any type of fabric (or fabric channel) (not shown in FIG. 2) or
network adapter 260 to the storage controller 240, such as
Fibre channel, FICON, ESCON, Ethernet, fiber optic, wire-
less, or coaxial adapters. Data storage system 200 is accord-
ingly equipped with a suitable fabric (not shown in FIG. 2) or
network adapter 260 to communicate. Data storage system
200 is depicted in FIG. 1 comprising storage controller 240
and storage 230.

To facilitate a clearer understanding of the methods
described herein, storage controller 240 is shown in FIG. 2 as
a single processing unit, including a microprocessor 242,
system memory 243 and nonvolatile storage (“NVS”) 216,
which will be described in more detail below. It is noted that
in some embodiments, storage controller 240 is comprised of
multiple processing units, each with their own processor
complex and system memory, and interconnected by a dedi-
cated network within data storage system 200. Storage 230
may be comprised of one or more storage devices, such as
storage arrays, which are connected to storage controller 240
by a storage network.

In some embodiments, the devices included in storage 230
may be connected in a loop architecture. Storage controller
240 manages storage 230 and facilitates the processing of
write and read requests intended for storage 230. The system
memory 243 of storage controller 240 stores program instruc-
tions and data, which the processor 242 may access for
executing functions and method steps associated with man-
aging storage 230 and executing the steps and methods ofthe
present invention in a computing environment. In one
embodiment, system memory 243 includes, is associated, or
is in communication with the operation software 250 for in a
computer storage environment, including the methods and
operations described herein. As shown in FIG. 2, system
memory 243 may also include or be in communication with a
cache 245 for storage 230, also referred to herein as a “cache
memory”, for buffering “write data” and “read data”, which
respectively refer to write/read requests and their associated
data. In one embodiment, cache 245 is allocated in a device
external to system memory 243, yet remains accessible by
microprocessor 242 and may serve to provide additional
security against data loss, in addition to carrying out the
operations as described in herein.

In some embodiments, cache 245 is implemented with a
volatile memory and non-volatile memory and coupled to
microprocessor 242 via a local bus (not shown in FIG. 2) for
enhanced performance of data storage system 200. The NVS
216 included in data storage controller is accessible by micro-
processor 242 and serves to provide additional support for
operations and execution of the present invention as described
in other figures. The NVS 216, may also referred to as a
“persistent” cache, or “cache memory” and is implemented
with nonvolatile memory that may or may not utilize external
power to retain data stored therein. The NVS may be stored in
and with the Cache 245 for any purposes suited to accomplish
the objectives of the present invention. In some embodiments,
a backup power source (not shown in FIG. 2), such a battery,
supplies NVS 216 with sufficient power to retain the data

US 9,262,080 B2

7

stored therein in case of power loss to data storage system
200. In certain embodiments, the capacity of NVS 216 is less
than or equal to the total capacity of cache 245.

Storage 230 may be physically comprised of one or more
storage devices, such as storage arrays. A storage array is a
logical grouping of individual storage devices, such as a hard
disk. In certain embodiments, storage 230 is comprised of a
JBOD (Just a Bunch of Disks) array or a RAID (Redundant
Array of Independent Disks) array. A collection of physical
storage arrays may be further combined to form a rank, which
dissociates the physical storage from the logical configura-
tion. The storage space in a rank may be allocated into logical
volumes, which define the storage location specified in a
write/read request.

In one embodiment, by way of example only, the storage
system as shown in FIG. 2 may include a logical volume, or
simply “volume,” may have different kinds of allocations.
Storage 230a, 2305 and 2307 are shown as ranks in data
storage system 200, and are referred to herein as rank 230aq,
23056 and 2307. Ranks may be local to data storage system
200, or may be located at a physically remote location. In
other words, a local storage controller may connect with a
remote storage controller and manage storage at the remote
location. Rank 230a is shown configured with two entire
volumes, 234 and 236, as well as one partial volume 232a.
Rank 2305 is shown with another partial volume 2325. Thus
volume 232 is allocated across ranks 230a and 2305. Rank
230 is shown as being fully allocated to volume 238—that is,
rank 230z refers to the entire physical storage for volume 238.
From the above examples, it will be appreciated that a rank
may be configured to include one or more partial and/or entire
volumes. Volumes and ranks may further be divided into
so-called “tracks,” which represent a fixed block of storage. A
track is therefore associated with a given volume and may be
given a given rank.

The storage controller 240 may include a I/O request clas-
sifier module 255, a CPU core(s) module 257, and a scheduler
module 259 in a computing environment. The 1/O request
classifier module 255, CPU core(s) module 257, and the
scheduler module 259 may work in conjunction with each and
every component of the storage controller 240, the hosts 210,
220, 225, and storage devices 230. The I/O request classifier
module 255, CPU core(s) module 257, and the scheduler
module 259 may be structurally one complete module or may
be associated and/or included with other individual modules.
The I/O request classifier module 255, CPU core(s) module
257, and the scheduler module 259 may also be located in the
cache 245 or other components of the storage controller 240
to accomplish the purposes of the present invention.

The storage controller 240 may be constructed with a con-
trol switch 241 for controlling the fiber channel protocol to
the host computers 210, 220, 225, a microprocessor 242 for
controlling all the storage controller 240, a nonvolatile con-
trol memory 243 for storing a microprogram (operation soft-
ware) 250 for controlling the operation of storage controller
240, data for control and each table described later, cache 245
for temporarily storing (buffering) data, and buffers 244 for
assisting the cache 245 to read and write data, a control switch
241 for controlling a protocol to control data transfer to or
from the storage devices 230, the I/O request classifier mod-
ule 255, CPU core(s) module 257, and the scheduler module
259 on which information may be set. Multiple bufters 244
may be implemented with the present invention to assist with
the operations as described herein. In one embodiment, the
cluster hosts/nodes, 210, 220, 225 and the storage controller

10

15

20

25

30

35

40

45

50

55

60

65

8

240 are connected through a network adaptor (this could be a
fibre channel) 260 as an interface i.e., via at least one switch
called “fabric.”

In one embodiment, the host computers or one or more
physical or virtual devices, 210, 220, 225 and the storage
controller 240 are connected through a network adaptor (this
could be a fibre channel) 260 as an interface i.e., via at least
one switch called “fabric.” In one embodiment, by way of
example only, the operation of the system shown in FIG. 2
will be described. The microprocessor 242 may control the
memory 243 to store command information from the host
device (physical or virtual) 210 and information for identify-
ing the host device (physical or virtual) 210. The control
switch 241, the buffers 244, the cache 245, the operating
software 250, the microprocessor 242, memory 243, NVS
216, the I/O request classifier module 255, CPU core(s) mod-
ule 257, and the scheduler module 259 are in communication
with each other and may be separate or one individual com-
ponent(s). Also, several, if not all of the components, such as
the operation software 250 may be included with the memory
243. Each of the components within the devices shown may
be linked together and may be in communication with each
other for purposes suited to the present invention.

As mentioned previous, in one embodiment, by way of
example only, the CPU cores are assigned to process either
write operations, read operations, and read and write opera-
tions that are scheduled for processing. A maximum number
of the CPU cores are set for processing only the read opera-
tions, thereby lowering a read latency. A minimal number of
the CPU cores are allocated for processing the write opera-
tions, thereby increasing write latency. Upon reaching a
throughput limit for the write operations that causes the mini-
mal number of the plurality of CPU cores to reach a busy
status, the minimal number of the plurality of CPU cores for
processing the write operations is increased.

In this way, the read latency is reduced in a processing
storage system with a write cache, using a pool of processor
cores used for both read and write operations. The 1/O
requests are scheduled for lowering the read latency, which is
visible to the user, while increasing the write latency that is
hidden using the write cache. As will be illustrated below in
FIG. 3, the illustrated embodiments first define a state of the
CPU cores. The CPU cores may be either defined to be in an
idle state or a busy state. A CPU core is considered to be in the
idle state when the CPU core has not processed any input/
output (I/O) request (e.g., a task for CPU core or write) during
specified threshold. A CPU core is considered to be in the
busy state when the CPU core has processed at least one I/O
request/task (e.g., for read or write) during specified thresh-
old.

For CPU cores with different processing power, a a thread
weight value (TWV) may be assigned. The TWV determines
what proportion of the workload the CPU core will bear
relative to other CPU cores. For example, if one CPU core has
TWYV weight of 30 and all other threads have TWV weight of
60, the 30-weight thread will bear half as much as any other
thread that has the 60-weight thread.

Each 1/O request will be assigned to one CPU core from a
pool of CPU cores. These /O requests/tasks that are to be sent
to the CPU cores are classified as either a read operation or a
write operation. Since the CPU cores are given a status of
either idle or busy, the CPU cores are granted permission to
handle the read operations and/or write operations, depend-
ing on the determined status (idle or busy). The read and write
operations are further classified as one of at least three con-
crete types of operations: read only operation (R), write only
operation (W) and/or read and write operation (R/W).

US 9,262,080 B2

9

The default assignment of the 1/0 requests/tasks is to set a
maximum number of CPU cores for the read operations and to
allot only a minimum number of CPU cores the write opera-
tions. To sustain the write operations bandwidth, the CPU
core idle time and threshold enforcement (e.g., a determina-
tion as to whether the CPU cores are in either a busy or idle
state) is measured, and an additional CPU core for the 1/0
request for the write operations may be allocated as needed.
On a fully loaded system (e.g., all CPU cores are busy) all
cores may be assigned to read and write operations.

For example, consider a system with pool of four CPU
cores (CPU cores #1, #2, #3, and #4) and the processing
power of CPU core #1 is half as compared with all the other
CPU cores. The default assignment (when all cores are IDLE)
is to assign the maximum number of cores to the read opera-
tions and minimal number of cores to the write operations.
Since core #1 has half as much processing powers as all other
cores, the number of I/O requests scheduled for core #1 to
process will be less. The scheduled number of /O requests for
core #1 will be assigned according to the TWV. When the
write operations’ /O bandwidth is increasing, the CPU core
#4 will become busy at the point of reaching the TWV. At this
point, an additional core, which would be core #3 since it is
the core that is adjacent to core #4, is assigned to perform the
write /O requests. Again, because core #1 has half as much
processing powers as all other cores, the number of I/O
requests scheduled for core #1 to process will be less. The
scheduled number of I/O requests for core #1 will be assigned
according to the TWV. When the write operations’ I/O band-
width for core #3 is increasing, the CPU core #3 will become
busy at the point of reaching the TWV. At this point, an
additional core, which would be core #2 since it is the core
that is adjacent to core #3, is assigned to perform the write I/O
requests. Again, because core #1 has half as much processing
powers as all other cores, the number of I/O requests sched-
uled for core #1 to process will be less. The scheduled number
of /O requests for core #1 will be assigned according to the
TWV. Inafully loaded system (e.g., all the cores are busy), all
cores are assigned to process the read and write [/O requests.
Similar to the previous stated scenarios, even when all pro-
cessing cores are busy, core #1 has half as much processing
powers as all other cores, the number of I/O requests sched-
uled for core #1 to process will be less. The scheduled number
of /O requests for core #1 will be assigned according to the
TWV.

Turning now to FIG. 3, a flowchart illustrating an exem-
plary method 300 for reducing input/output (I/0) latency in a
storage system using a pool of processors is depicted. The
method 300 begins (step 302) by assigning to each CPU core
only write operations, read operations, or read and write
operations (step 304). A TWV may be set/assigned for the
CPU cores having different processing power (e.g., the CPU
cores with different processing power are assigned the TWV
weight value) to assist with allocating the read operations and
the write operations, for which the CPU cores have been
granted access to perform, to proportionately process the read
operations and the write operations according to the TWV. A
maximum number of the CPU cores are set for processing
only the read operations, thereby lowering the read latency
(step 306). A minimal number of the CPU cores are allocated
for processing only the write operations, thereby increasing
the write latency (step 308). This minimal number of the CPU
cores may be just one CPU core that is allocated for process-
ing the write operations. The method 300 determines if, the
minimal number of CPU cores have reached a busy status
(step 310). If yes, the method 300 may allocate an additional
CPU core to the minimal number of CPU cores for processing

10

15

20

25

30

35

40

45

50

55

60

65

10

the write operations (step 312). If no, the method 300 contin-
ues to process the read operations and write operations
according to steps 306 and 308 (step 314). The method 300
also determines if all of the CPU cores are in a busy status
(step 316). In other words, if there is only one remaining core
in the “maximum set number of CPU cores” for processing
the read only operations has achieved 100% utilization or
reached the TWV threshold, then this last remaining CPU
core will become busy. If all of the CPU cores are in a busy
status/state, the method 300 permits the entire pool of pro-
cessing cores to process both read operations and writes
operations (step 318). If all of the CPU cores are not in a busy
status, the method 300 continues to process the read opera-
tions and write operations according to steps 306 and 308.
The method ends (step 320). It should be noted that a time out
period may and set for determining if the CPU cores are in an
idle state or a busy state.

As mentioned previously, the read and write operations are
further classified as one of at least three concrete types of
operations: read only operation (R), write only operation (W)
and/or read and write operation (R/W). The permissions for
the read only operation (R), the write only operation (W)
and/or the read and write operation (R/W) are granted to each
CPU core and illustrated below in FIGS. 4-7. Also, FIGS. 4-7
illustrate how the state of the CPU cores change according to
the operations described in FIG. 3.

FIG. 4 is ablock diagram 400 illustrating exemplary opera-
tions for reducing read latency where all CPU cores are in an
idle state. When all CPU cores (labeled as CPU core 1, CPU
core 2, CPU core 3, and CPU core 4) are determined to be in
an idle state, all threads (e.g., all CPU cores) except the last
CPU core 4 (counted from left to right) will be assigned/
permitted to processes only read operations (R) (labeled in
FIGS. 4-7 as “R”), and the last thread (e.g., the last CPU core
4) will be permitted to process only write operations (W)
(labeled in FIGS. 4-7 as “W™). In this scenario, each of the
CPU cores (e.g., CPU cores 1-3), expect for the last CPU core
(e.g., CPU core 4), are assigned/granted permission 401, 402,
and 403 to process only read operations (R). Thus, three CPU
cores 1-3 are determined to be the maximum number of cores
to process the read operations (R) and the minimum number
of CPU cores for processing the write operations (W) is
determined to be one. For setting and determining the maxi-
mum number of CPU cores for processing the read operations
(R), in one embodiment, the CPU cores are counted, starting
from a firstmost position (e.g., a left most position) and con-
tinuing the counting until just previous to a lastmost position
(e.g., stop counting just previous to the rightmost positioned
CPU core). In other words, all CPU cores, starting from the
left and counting to the right, and stopping just short of the
last, right most positioned core, may be determined to be set
as the maximum number of the CPU cores for being assigned
the read operations (R). The lastmost (e.g., the rightmost
positioned core is then considered to be the minimum number
of cores for being assigned the write operations (W).

Thus, the scheduler 405 assigns/sends 401, 402, and 403
each CPU core (e.g., CPU core 1-3), expect for the last CPU
core (e.g., CPU core 4), the read only operations (R). The last
CPU core (e.g., CPU core 4) is assigned/granted permission
404 to process write only operations (W). More specifically,
the scheduler sends to the last CPU core (e.g., CPU core 4)
only the write only operations (W).

Moreover, if each CPU core is assigned a thread weight
value (TWV), and the TWV determines what proportion of
the work-load the CPU core will bear relative to other CPU
cores, each CPU core will proportionally process the read
operations and the write operations. In this scenario 400, by

US 9,262,080 B2

11

way of example only, CPU core 1 is assigned a lowest TWV,
and CPU cores 2-4 are assigned a different TWV. Thus, based
upon the TWV assigned to CPU core 1, the scheduler 405
assigns/sends 401 only 1 read only operations (R) to CPU
core 1. Also, based on the TWV assigned to each of the
remaining cores (CPU cores 2-4), the scheduler 405 assigns/
sends 402 and 403 to CPU core 2 and CPU core 2 two read
operations (R), and the scheduler 405 assigns/sends 404 to
CPU core 4 two write operations (W).

As a general rule, when a CPU core from the lastmost side
(e.g., the rightmost side) is determined to be in the busy state,
and all other CPU cores to the left side of this lastmost CPU
core (e.g., rightmost CPU core) are determined to be in the
idle state, at least one additional CPU core from this lastmost
side (e.g., right side) is granted permission for processing
write operations. In other words, each time a CPU core from
the right side and reached a busy status, and all other CPU
cores from left side are in idle state, write permissions are
granted to additional CPU cores from the rightmost side.
(This additional CPU core, which was determined to be in the
idle state, may now receive permission for the write opera-
tions. This additional CPU core is to the immediate left of the
right most read unit that was determined to be in the busy
mode. This process, as mentioned previously and illustrated
below in FIGS. 5-6, assists in determining and setting the
maximum number of cores for assigning the read operations
and the minimal number of cores for the write operations.

FIG. 5is ablock diagram 500 illustrating exemplary opera-
tions for reducing read latency where all CPU cores are in an
idle state except for a rightmost CPU core. In this scenario all
CPU cores 1-3 are determined to be in an idle state except for
arightmost CPU core 4, which is determined to be in the busy
state. Thus, by applying the general rule, as mentioned above
the first two threads (e.g., CPU cores 1 and 2) will be permit-
ted to process only the read only operations (R). More spe-
cifically, the scheduler 505 assigns/sends 501 and 502 to CPU
cores 1 and 2 only the read only operations (R).

Since the lastmost CPU core 4 is determined to be in a busy
status, and all other CPU cores 1-3, that were to the left side
of'this lastmost CPU core 4 are in an idle status, an additional
CPU core (e.g., CPU core 3), that is just left of this lastmost
side (e.g., CPU core 3 is just left of CPU core 4), is now
assigned/granted 503 permission for processing write opera-
tions (W). More specifically, the scheduler 505 sends 503 to
this additional CPU core (e.g., CPU core 3) that is just left of
this lastmost side of CPU cores (e.g., CPU core 4), only the
write only operations (W).

As stated above, if each core is assigned a thread weight
value (TWV), and the TWV determines what proportion of
the work-load the CPU core will bear relative to other CPU
cores, each CPU core will proportionally process the read
operations and the write operations. In this scenario 500, by
way of example only, CPU core 1 is assigned a lowest TWV,
and CPU cores 2-4 are assigned a different TWV. Thus, based
upon the TWV assigned to CPU core 1, the scheduler 505
assigns/sends 501 only 1 read only operations (R) to CPU
core 1. Also, based on the TWV assigned to CPU cores 2-4,
the scheduler 505 assigns/sends 503 two read only operations
(R) to CPU core 2. However, CPU core 4 is in a busy status,
when processing 8 write only operations (W) because the
write operations’ /O bandwidth was increasing for each
additional write only operation (W). At this point, CPU core
4 had a busy status, due to the throughput limit reaching a
maximum allowable point before the write cache could no
longer sustain, without detection, the increased, but hidden,
write latency. Because of the busy status, an additional core,
which would be CPU core 3 since it is the CPU core that is

10

15

20

25

30

35

40

45

50

55

60

65

12
adjacent to CPU core 4, is assigned 503 to process only the
write 1/O requests (W). Thus, the scheduler 505 sends 503
two write only operations (W) to CPU core 3.

FIG. 6 is ablock diagram 600 illustrating exemplary opera-
tions for reducing read latency where all CPU cores are in an
idle state except for the 2 rightmost CPU cores. In this sce-
nario CPU cores 1-2 are determined to be in an idle state. The
two-lastmost/rightmost CPU cores 3-4 are determined to be
in the busy state. Thus, by applying the general rule, as men-
tioned above, only the first thread (e.g., CPU core 1) will be
assigned/permitted 601 to process only the read only opera-
tions (R). More specifically, the scheduler 605 only sends 601
to the first CPU cores (e.g., CPU core 1) the read only opera-
tions (R).

Since the two, lastmost CPU cores 3-4 were determined to
be busy, an additional CPU core (e.g., CPU core 2) that is just
left of the first one of the lastmost CPU cores (e.g., CPU core
3) is now assigned/granted 602 permission for processing
write only operations (W). More specifically, the scheduler
sends to this additional CPU core (e.g., CPU core 2) that is
justleft of the first one of the lastmost side of CPU cores (e.g.,
CPU core 3), only write operations (W), even though this
additional CPU core (e.g., CPU core 2) was determined to be
in the idle state. The scheduler 605 sends 603 and 604 to these
two lastmost-CPU cores (e.g., CPU cores 3 and 4) only the
write only operations (W).

Similar to FIG. 5 and FIG. 6, if each CPU core has a
different processing power, a thread weight value (TWV) is
assigned, and the TWV determines what proportion of the
workload the CPU core will bear relative to other CPU cores.
Each CPU core will proportionally process the read opera-
tions and the write operations, according to the TWV. In this
scenario 500, by way of example only, CPU core 1 is assigned
a lowest TWV, and CPU cores 2-4 are assigned a different
TWYV. Thus, based upon the TWV assigned to CPU core 1, the
scheduler 605 assigns/sends 601 two read only operations (R)
to CPU core 1. The scheduler 605 sends 602 three write only
operations (W) to CPU core 2. As illustrated, CPU core 3
sends 603 ten write only operations (W). CPU core 4 sends
604 eight write only operations (W). This was because the
write operations’ 1/O bandwidth was increasing for CPU
cores 3 and 4 and both CPU cores 3-4 reached a busy status,
and thus, reached a threshold limit, where the write cache
could no longer sustain without detection, the increased, but
hidden, write latency. Thus CPU core 3 was allocated to the
minimal number of CPU cores for handing the additional
write only operations (W). Thus, the scheduler 605 sends 603
three write only operations (W) to CPU core 2. CPU cores 3
and 4 continue to process the assigned/sent 603 and 604 write
only operations (W).

However, when all CPU cores 1-4 are determined to be in
an busy state, each one of the CPU cores are granted permis-
sion to process (e.g., handle) both read operations and write
operations. This scenario is depicted in FIG. 7 below.

FIG. 7 is ablock diagram 700 illustrating exemplary opera-
tions for reducing read (1/O) latency where all CPU cores are
in the busy state. When all CPU cores 1-4 are determined to be
in the busy state, all threads (e.g., all CPU cores 1-4) will be
assigned/permitted 701, 702, 703, and 704 to handle both
read operations and write operations (labeled in the diagram
as “R” and “W” rather than as described above that indicated
a “read and write operation (R/W)”). In this scenario, each of
the CPU cores 1-4 is assigned/permitted 701, 702, 703, and
704 (e.g., granted permission) to process the read operations
(R) and the write operations (W). More specifically, the

US 9,262,080 B2

13
scheduler 705 assigns/sends 701, 702, 703, and 704 to each
CPU core 1-4 both the read only operations (R) and the write
only operations (W).

In the fully loaded system (e.g., all the core are busy), all
CPU cores are assigned to process the read and write 1/O
requests. Similar to the previous stated scenarios, even with
all of the CPU cores reaching a busy status, core #1 has half as
much processing powers as all other cores. The number of /O
requests scheduled for core #1 to process will be less because
of' the difference in processing power. The scheduled number
of read operation for CPU core 1 will be assigned according
to the TWV. Similar to FIG. 5-7, if the CPU cores 1-4 have
different processing powers, each CPU core is assigned a
thread weight value (TWV). The TWV determines what pro-
portion of the workload each of the CPU cores 1-4 will bear
relative to other CPU cores. In other words, based upon the
TWYV, each CPU core 1-4 may proportionally process the read
operations (R) and the write operations (W) according to the
TWYV thatis reflective of the processing power of the core. In
this scenario 700, CPU core 1 is assigned a lowest TWV, and
CPU core 2, CPU core 3, and CPU core 4 are assigneda TWV
that is different than CPU core 1. Thus, based upon the TWV
assigned to CPU core 1, the scheduler 705 only assigns/sends
701 three read only operations (R) and two write only opera-
tions (W) to CPU core 1. The scheduler 705 sends 702 five
read only operations (R) and four write only operations (W)
(9 total classified tasks) to CPU core 2. The scheduler 705
assigns/sends 703 five read only operations (R) and four write
only operations (W) (9 total classified tasks) to CPU core 3
and four read only operations (R) and six write only opera-
tions (W) (10 total classified tasks) to CPU core 4.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wired, optical fiber cable, RF, etc.,
or any suitable combination of the foregoing. Computer pro-

20

25

40

45

14

gram code for carrying out operations for aspects of the
present invention may be written in any combination of one or
more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present invention have been described above
with reference to flowchart illustrations and/or block dia-
grams of methods, apparatus (systems) and computer pro-
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra-
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks. The computer program instructions may also
beloaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro-
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the above figures
illustrate the architecture, functionality, and operation of pos-
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the

US 9,262,080 B2

15

specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

While one or more embodiments of the present invention
have been illustrated in detail, the skilled artisan will appre-
ciate that modifications and adaptations to those embodi-
ments may be made without departing from the scope of the
present invention as set forth in the following claims.

What is claimed is:

1. A method for reducing read latency in a read processing
storage system using a pool of a plurality of CPU cores,
comprising:

assigning to each one of the plurality of CPU cores for

processing only one of write operations, read operations,
and read and write operations that are scheduled for
processing; and

allocating a minimal number of the plurality of CPU cores

for processing the write operations, thereby increasing a
write latency, wherein upon reaching a throughput limit
for the write operations that causes the minimal number
of' the plurality of CPU cores to reach a busy status, the
minimal number of the plurality of CPU cores for pro-
cessing the write operations is increased.

2. The method of claim 1, further including setting a maxi-
mum number of the plurality of CPU cores for processing
only the read operations, thereby lowering the read latency.

3. The method of claim 1, further including scheduling the
write operations, the read operations, and the read and write
operations, between the pool of the plurality of processing
cores, according to a thread weight value (TWV) that is
assigned to each one of the plurality of processing cores
having a difference in processing power.

4. The method of claim 1, further including sustaining a
bandwidth of the write operations by measuring core idle
time and a throughput limit.

5. The method of claim 1, further including setting a time-
out period for a predetermined threshold period for process-
ing the write operations, the read operations, and the read and
write operations.

6. The method of claim 1, further including assigning the
read and write operations to each of the plurality of process-
ing cores for processing if each of the plurality of CPU cores
have attained the busy status.

7. The method of claim 1, wherein the busy status repre-
sents those of the plurality of CPU cores that have processed
at least one of the write operations, the read operations, and
the read and write operations during a predetermined thresh-
old period.

8. The method of claim 1, further including assigning only
the read operations to the plurality of CPU cores having an
idle status, wherein the idle status represents those of the
plurality of CPU cores that have yet to process any of the write
operations, the read operations, and the read and write opera-
tions during a predetermined threshold period.

9. The method of claim 8, further including determining
whether each one of the plurality of CPU cores had one of the
idle status and the busy status during a last-predetermined
threshold period.

10. The method of claim 1, further including determining
the maximum number of the plurality of CPU cores by count-
ing, from a firstmost positioned, one of the plurality of CPU
cores, and sequentially counting to the right, until reaching a
lastmost positioned one of the plurality of CPU cores, to
include in the maximum number of the plurality of CPU cores
to process the read operations.

11. The method of claim 10, further including determining
the minimum number of the plurality of CPU cores by locat-

10

15

20

25

30

35

40

45

50

55

60

65

16

ing the lastmost positioned one of the plurality of CPU cores
to process the write operations.

12. The method of claim 11, further including:

ifthe lastmost positioned one of the plurality of CPU cores

is determined to be in the busy status, and those of the

plurality of CPU cores to the left of the lastmost posi-

tioned one of the plurality of CPU cores are in the idle

status:

permitting one of the plurality of CPU cores that is to the
immediate left of the lastmost positioned one of the
plurality of read to process the write operations.

13. The method of claim 12, further including:

if at least one or more of an nth number of lastmost posi-

tioned ones of the plurality of CPU cores are determined

to be in the busy status, and all other of the plurality of

CPU cores to the left of the at least one or more of the nth

number of lastmost positioned ones of the plurality of

CPU cores are in the idle status:

permitting an additional one of the at least one or more of
the nth number of lastmost positioned ones of the
plurality of CPU cores to process the write operations.

14. A system for reducing read latency in a read processing
storage system using a pool of a plurality of CPU cores,
comprising:

at least one scheduler scheduling write operations, read

operations, and read and write operations between the
pool of the plurality of processing cores,

at least one write cache, remotely connected to each of the

plurality of CPU cores, assisting with the write opera-
tions;

at least one processor device, controlling the at least one

scheduler and the at least one write cache, and operable

in the read processing storage system, wherein the at

least one processor device:

assigns to each one of the plurality of CPU cores for
processing only one of write operations, read opera-
tions, and read and write operations that are scheduled
for processing, and

allocates a minimal number of the plurality of CPU
cores for processing the write operations, thereby
increasing a write latency, wherein upon reaching a
throughput limit for the write operations that causes
the minimal number of the plurality of CPU cores to
reach a busy status, the minimal number of the plu-
rality of CPU cores for processing the write opera-
tions is increased.

15. The system of claim 14, wherein the at least one pro-
cessor device sets a maximum number of the plurality of CPU
cores for processing only the read operations, thereby lower-
ing the read latency.

16. The system of claim 14, wherein the at least one pro-
cessor device assigns a thread weight value (TWV) to each
one of the plurality of processing cores having a difference in
processing power, wherein the write operations, the read
operations, and the read and write operations, between the
pool of the plurality of processing cores, are proportionally
scheduled by the scheduler according to the TWV.

17. The system of claim 14, wherein the at least one pro-
cessor device sustains a bandwidth of the write operations by
measuring core idle time and a throughput limit.

18. The system of claim 14, wherein the at least one pro-
cessor device sets a time-out period for a predetermined
threshold period for processing the write operations, the read
operations, and the read and write operations.

19. The system of claim 14, wherein the at least one pro-
cessor device assigns the read and write operations to each of

US 9,262,080 B2

17
the plurality of processing cores for processing if each of the
plurality of CPU cores have attained the busy status.

20. The method of claim 14, wherein the busy status rep-
resents those of the plurality of CPU cores that have pro-
cessed at least one of the write operations, the read operations,
and the read and write operations during a predetermined
threshold period.

21. The system of claim 14, wherein the at least one pro-
cessor device assigns only the read operations to the plurality
of CPU cores having an idle status, wherein the idle status
represents those of the plurality of CPU cores that have yet to
process any of the write operations, the read operations, and
the read and write operations during a predetermined thresh-
old period.

22. The system of claim 21, wherein the at least one pro-
cessor device determines whether each one of the plurality of
CPU cores had one of the idle status and the busy status during
a last-predetermined threshold period.

23. The system of claim 14, wherein the at least one pro-
cessor device determines the maximum number of the plural-
ity of CPU cores by counting, from a firstmost positioned, one
of'the plurality of CPU cores, and sequentially counting to the
right, until reaching a lastmost positioned one of the plurality
of CPU cores, to include in the maximum number of the
plurality of CPU cores to process the read operations.

24. The system of claim 23, wherein the at least one pro-
cessor device determines the minimum number of the plural-
ity of CPU cores by locating the lastmost positioned one of
the plurality of CPU cores to process the write operations.

25. The system of claim 24, wherein the at least one pro-
cessor device:

if the lastmost positioned one of the plurality of CPU cores
is determined to be in the busy status, and those of the
plurality of CPU cores to the left of the lastmost posi-
tioned one of the plurality of CPU cores are in the idle
status:
permits one of the plurality of CPU cores that is to the

immediate left of the lastmost positioned one of the
plurality of read to process the write operations.

26. The system of claim 25, wherein the at least one pro-
cessor device:

if at least one or more of an nth number of lastmost posi-
tioned ones of the plurality of CPU cores are determined
to be in the busy status, and all other of the plurality of
CPU cores to the left of the at least one or more of the nth
number of lastmost positioned ones of the plurality of
CPU cores are in the idle status:
permits an additional one of the at least one or more of

the nth number of lastmost positioned ones of the
plurality of CPU cores to process the write operations.

27. A computer program product for reducing read latency
in a read processing storage system using a pool of a plurality
of CPU cores, the computer program product comprising a
computer-readable storage medium having computer-read-
able program code portions stored therein, the computer-
readable program code portions comprising:

a first executable portion that assigns to each one of the
plurality of CPU cores for processing only one of write
operations, read operations, and read and write opera-
tions that are scheduled for processing; and

a second executable portion that allocates a minimal num-
ber ofthe plurality of CPU cores for processing the write
operations, thereby increasing a write latency, wherein
upon reaching a throughput limit for the write operations
that causes the minimal number of the plurality of CPU

10

15

20

25

30

35

40

45

50

55

60

65

18

cores to reach a busy status, the minimal number of the
plurality of CPU cores for processing the write opera-
tions is increased.

28. The computer program product of claim 27, further
including a third executable portion that sets a maximum
number of the plurality of CPU cores for processing only the
read operations, thereby lowering the read latency.

29. The computer program product of claim 27, further
including a fourth executable portion that assigns a thread
weight value (TWV) to each one of the plurality of processing
cores having a difference in processing power, wherein the
write operations, the read operations, and the read and write
operations, between the pool of the plurality of processing
cores, are proportionally scheduled according to the TWV.

30. The computer program product of claim 27, further
including a fourth executable portion that sustains a band-
width of the write operations by measuring core idle time and
a throughput limit.

31. The computer program product of claim 27, further
including a fourth executable portion that sets a time-out
period for a predetermined threshold period for processing
the write operations, the read operations, and the read and
write operations.

32. The computer program product of claim 27, further
including a fourth executable portion that assigns the read and
write operations to each of the plurality of processing cores
for processing if each of the plurality of CPU cores have
attained the busy status.

33. The computer program product of claim 27, wherein
the busy status represents those of the plurality of CPU cores
that have processed at least one of the write operations, the
read operations, and the read and write operations during a
predetermined threshold period.

34. The computer program product of claim 27, further
including a fourth executable portion that assigns only the
read operations to the plurality of CPU cores having an idle
status, wherein the idle status represents those of the plurality
of CPU cores that have yet to process any of the write opera-
tions, the read operations, and the read and write operations
during a predetermined threshold period.

35. The computer program product of claim 34, further
including a fifth executable portion that determines whether
each one of the plurality of CPU cores had one of the idle
status and the busy status during a last-predetermined thresh-
old period.

36. The computer program product of claim 27, further
including a fourth executable portion that determines the
maximum number of the plurality of CPU cores by counting,
from a firstmost positioned, one of the plurality of CPU cores,
and sequentially counting to the right, until reaching a last-
most positioned one of the plurality of CPU cores, to include
in the maximum number of the plurality of CPU cores to
process the read operations.

37. The computer program product of claim 36, further
including a fifth executable portion that determines the mini-
mum number of the plurality of CPU cores by locating the
lastmost positioned one of the plurality of CPU cores to
process the write operations.

38. The computer program product of claim 37, further
including a sixth executable portion that:

ifthe lastmost positioned one of the plurality of CPU cores

is determined to be in the busy status, and those of the
plurality of CPU cores to the left of the lastmost posi-
tioned one of the plurality of CPU cores are in the idle
status:

US 9,262,080 B2

19

permits one of the plurality of CPU cores that is to the
immediate left of the lastmost positioned one of the
plurality of read to process the write operations.
39. The computer program product of claim 38, further
including a seventh executable portion that:
if at least one or more of an nth number of lastmost posi-
tioned ones of the plurality of CPU cores are determined
to be in the busy status, and all other of the plurality of
CPU cores to the left of the at least one or more of the nth
number of lastmost positioned ones of the plurality of
CPU cores are in the idle status:
permits an additional one of the at least one or more of the
nth number of lastmost positioned ones of the plurality
of CPU cores to process the write operations.

#* #* #* #* #*

15

20

